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Abstract 

Freeform surfaces have wider engineering applications. Designers use B-splines, Non-Uniform Rational B-
splines, etc. to represent the freeform surfaces in CAD, while the manufacturers employ machines with 
controllers based on approximating functions or splines. Different errors also creep in during machining 
operations. Therefore the manufactured freeform surfaces have to be verified for conformance to design 
specification. Different points on the surface are probed using a coordinate measuring machine and substitute 
geometry of surface established from the measured points is compared with the design surface. The sampling 
points are distributed according to different strategies. In the present work, two new strategies of distributing the 
points on the basis of uniform surface area and dominant points are proposed, considering the geometrical nature 
of the surfaces. Metrological aspects such as probe contact and margins to be provided along the sides have also 
been included. The results are discussed in terms of deviation between measured points and substitute surface as 
well as between design and substitute surfaces, and compared with those obtained with the methods reported in 
the literature. 

Keywords: freeform surface, coordinate measuring machine, machining errors, probe size, sampling strategies, 
substitute geometry 
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I. Introduction 
 

 Freeform features find wider applications in the dies and moulds, patterns and models, 
plastic products, etc. used in many fields ranging from automotive and aerospace to 
biomedical, entertainment and geographical data processing [1]. Designers use B-splines, 
Non-Uniform rational B-splines, etc. in creating freeform surfaces for engineering 
applications and often specify profile tolerances. Manufacturers employ machines with 
controllers based on approximating functions or splines. Also during the machining 
operations, errors are introduced due to tool deflection, workpiece deflection, guideway 
errors, spindle runout, machine vibration, etc. Therefore, the manufactured freeform surfaces 
are verified using contact and non-contact methods. The coordinate measuring machines 
(CMMs) using contact probes measure a large number of discrete sample points. These 
measured points are used to create the substitute geometry for the feature being measured. 
The substitute geometry is compared with the design intent (CAD model) to determine 
conformance. It is intuitive that the measurement accuracy increases with increased sample 
size, however the sample size is often limited by cost and time constraints. Thus, for a given 
sample size, the sampling strategy used is expected to determine the locations of these 
measurement points such that the surface may be effectively characterized. 

Verification of freeform features is a challenging task. The common measurement strategy, 
especially in the inspection planning software, is to distribute the sample points in a uniform 
pattern [2]. Though the method is very simple, it may often result in inadequate sampling 
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when there are sharp changes in curvatures and unnecessarily more sampling at relatively flat 
regions, both of which are undesirable in the measurement process. A number of research 
efforts to overcome this problem have been reported in the literature. Cho and Kim [3] 
proposed a sampling method using the surface mean curvature. Their method divides the 
surface into sub-regions and ranks them according to their mean curvature. A factor called 
region selection ratio, ranging between 0 and 1, is used in such a way that sample points are 
spread over the surface for larger region selection ratio and accumulated at the regions of high 
curvature for smaller region selection ratio. Pahk, et al. [4] proposed three sampling methods, 
viz. uniform distribution, curvature dependent distribution and hybrid distribution. The 
uniform distribution places sample points in the middle of the surface grid. The curvature 
dependent distribution uses the normal curvature and places more sample points at regions of 
high normal curvature. The hybrid method distributes the sample points in a user-specified 
proportion between the uniform and curvature dependent distribution methods. 

Edgeworth and Wilhelm [5] proposed an iterative method based on the surface normal data 
in which an interpolating curve between sample points on an initially sampled surface is 
developed and areas requiring further samples are identified for a complete measurement. 
ElKott, et al. [6, 7] proposed four sampling algorithms based on surface feature. The equi-
parametric sampling method distributes the sampling points equally along the knot vectors. 
The patch-size-based sampling method divides the surface into patches at the knot vectors. 
The share of points along the u and v parametric directions is proportional to the size of the 
patch. The patch mean Gaussian curvature method ranks the surface patches on the basis of 
their mean Gaussian curvature and the share of sample points will be larger for patch with 
higher ranking. The fourth method combines patch size and mean Gaussian curvature-based 
methods with user specified weights. 

Ainsworth, et al. [8] proposed three sampling criteria, namely a chord length criterion 
specifying the maximum chordal deviation between the line connecting any two points and 
the surface; a minimum sample density criterion specifying the maximum allowed distance 
between any two neighboring points on the surface; and a parameterization based sampling 
criterion taking the number of samples per knot span as specified by the user. Obeidat and 
Raman [9] proposed three heuristic algorithms for sampling of freeform surface patches using 
maximum Gaussian curvature, mean Gaussian curvatures and the point with average of the 
mean Gaussian curvature and minimum Gaussian curvature as critical points. The first 
algorithm starts with three sample locations in each patch corresponding to the critical points 
and places additional sample points in low density patches. In the second algorithm, the initial 
sample points are placed according to the first algorithm and the remaining points are added 
according to a particular patch size. The third algorithm first allocates sample points using 
patch mean Gaussian curvature ratio, additional sample points are added according to patch 
size ratio. 

It is seen that different strategies have been reported in the literature for verification of 
freeform features using a CMM. Given the number of sample points, the sampling strategy 
has to distribute these points over the surface in such a way that the feature is effectively 
characterized. At the sample positions, the measurement is carried out and the measured 
points are used to construct the substitute geometry or surface. The linear and normal 
deviations of the measured point from substitute surface are shown in Fig. 1. It is observed 
from the literature that the effect of probe size on the sampling results is not considered, while 
this is very important as the probe may not make contact with the work surface at the same 
point as that of the sampling point chosen. Next important observation is that these strategies 
lack metrological sense, which emphasizes that the sample points cannot be located at the 
edges as the edge measurement is unreliable. These issues can cause potential changes in the 
results obtained during verification. The above issues have already been considered by the 
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authors for freeform profiles [10] and are being extended here to freeform surfaces. Two new 
surface geometry based sampling strategies have been proposed in the present work. The first 
strategy is based on the surface area and the second strategy is based on the concept of 
dominant points. Three existing sampling strategies, namely the uniform distribution in 
Cartesian space and parametric space and distribution based on patch-size are also 
implemented. The results obtained using all these five methods are reported and discussed. It 
is seen that uniform surface area based method performs well in capturing higher form error 
values with low positional errors. 
 
2. CAD model of freeform surface 
 

The freeform features used in this study use the Non-Uniform Rational B-Splines 
(NURBS) representation [11]. The NURBS is used here, as it is the de facto industrial 
standard for computer aided design (CAD) due to its ability to accurately represent various 
shapes, including the primitives such as the spheres, cylinders, etc. to even very complex 
freeform features. The CAD model of freeform surface is referred to as design freeform 
surface or simply design surface in the present work. 

The design surface used in this work is a C2 continuous, Non-uniform Rational B-Spline 
(NURBS) surface. The NURBS surface is defined using (n+1)*(m+1) control points, denoted 
as Pi,j. The NURBS surface with degrees (p, q), defined in parametric space (u, v), is given as: 
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The {Pi,j} are the control points forming a bidirectional control net, the {wi,j} are the 
weights and {Ni,p(u)} and {Nj,q(v)} are the non-rational B-spline basis functions defined in the 
knot vectors U and V respectively. The value of Ni, p (u) can be estimated using the following 
recursive relations, choosing 0/0 = 0, if the denominators in the equation become zero. 
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where,  Ni, 0 (u) =  1; ui ≤ u < ui+1 
 0; otherwise 

The above equation can be used to compute Nj, q (v) by appropriately replacing the 
variables.  

The data used for designing the example surface is given below. 
Surface degrees (p, q) : 3, 3 Number of control points ((n+1) * (m+1)) : 5 * 5 
Control points (mm): 
P0,0(0, 0, 20)   P0,1(0, 12.5, 30)   P0,2(0, 25, 33)   P0,3(0, 37.5, 20)   P0,4(0, 50, 25) 
P1,0(12.5, 0, 23) P1,1(12.5, 12.5, 27) P1,2(12.5, 25, 30) P1,3(12.5, 37.5, 17)  P1,4(12.5, 50, 23) 
P2,0(25, 0, 25)  P2,1(25, 12.5, 25)  P2,2(25, 25, 27)  P2,3(25, 37.5, 22)  P2,4(25, 50, 25) 
P3,0(37.5, 0, 20)  P3,1(37.5, 12.5, 27)  P3,2(37.5, 25, 20) P3,3(37.5, 37.5, 20)  P3,4(37.5, 50, 14) 
P4,0(50, 0, 27)  P4,1(50, 12.5, 23)  P4,2(50, 25, 25)  P4,3(50, 37.5, 27) P4,4(50, 50, 22) 
Knot vectors: U = {0.0, 0.0, 0.0, 0.0, 0.3600, 1.0, 1.0, 1.0, 1.0} 
  V = {0.0, 0.0, 0.0, 0.0, 0.3717, 1.0, 1.0, 1.0, 1.0} 
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Fig. 2 shows the design freeform surface. The design surface is discretized in Cartesian 
space with suitable ∆x and ∆y spacing along the x and y axes. The corresponding u and v 
parameter values at each point on Cartesian space are computed. The mean curvature (H) and 
Gaussian curvature (K) are also computed [12] using the following equations. 
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where,  Su is the first derivative along u; Sv is the first derivative along v; Suu is the second 
derivative along u; Suv is the derivative of Su along v and Svv is the second derivative along v. 
The symbols × and • indicate the cross and dot products respectively. 
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Fig. 1. Freeform surface showing the measured 

point and deviations. 
 

 
 

Fig. 2. 3-D plot of the design surface. 

3. Measurement strategies 
 

In the present work, performance of all the reported algorithms is analyzed with 5% 
margins from all boundaries/edges. The start and end points are set at 5% of the feature size 
along that direction in Cartesian space. For this margin, the lower and upper bounds of the 
surface along the x-axis, denoted as xmin and xmax respectively, are computed. The 
corresponding parameter values are umin and umax respectively.  Similarly, the lower and upper 
bounds of the surface along the y-axis, denoted as ymin and ymax respectively, are computed. 
The corresponding parameters values are vmin and vmax respectively. The general flowchart for 
all measurement strategies is shown in Fig. 3. 

 
3.1. Existing methods 
 
3.1.1. Uniform distribution in Cartesian space 
 

The sample points are distributed with nearly equal spacing along the x and y axes. The 
spacing between sample points along each axis depends on the feature size and the number of 
sampling points along that axis. Then, the positions (x*

i, y
*
j) of all the sampling points can be 

obtained from the equation given below. 
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Specify design surface:  
Degree (p, q), control points Pi,j(n*m) and knot vectors (U, V) 

Discretize design surface in Cartesian space with fine spacing (∆x, ∆y) 
and compute the corresponding u- and v-parameters 

Distribute sampling points according to measurement strategy selected 

Simulate manufactured surface with spacing (∆x, ∆y) 

Start 

End 

Select CMM probe size and measure at sample points 

Specify sample size: Number of points, Ns (=Nu*Nv) 

Construct substitute surface based on CMM data 

Compute deviation:  measured points and substitute surface; 
substitute surface and design surface 
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where Nu and Nv are the sample sizes along the x and y axes respectively. Using the computed 
(x*

i, y
*
j) values, the nearest point (xi, yj) on the discretized surface is obtained.  The sample 

points thus obtained are shown in Fig. 4a. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. General flowchart for the present work. 
 
3.1.2. Uniform distribution in parametric space 
 

The sample points are distributed with nearly equal spacing along the u and v parametric 
directions. The spacing between sample points along each parametric direction depends on 
the range of the parameter and the number of sampling points along that direction. The 
positions of sample points (u*

i, v
*
j) are given by the following equation: 

* *max min max min
min min( 1) ; 1,..., and ( 1) ; 1,..., ,

( 1) ( 1)i u j v
u v

u u v v
u u i i N v v j j N

N N

− −
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− −  (5) 

where Nu and Nv are the sample sizes along the u and v directions respectively. The computed 
(u*

i, v
*
j) values are used to select the nearest points (ui, vj) from the discretized design surface. 

The sample points obtained by this method are shown in Fig. 4a. 
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3.1.3. Distribution based on patch size 
 

The patch size ranking strategy proposed by Obeidat and Raman [9] is suitably modified to 
work for a given sample size. The knot vectors (U, V) are used to divide the given design 
surface into patches and the patch sizes are computed. If a patch has u bounds as u1 and u2 and 
v bounds as v1 and v2, the patch size is computed as (u2 – u1) * (v2 – v1). The given sample size 
Ns is shared among the patches based on their sizes. The selection of sample points is based 
on mean Gaussian curvatures (K). The points are selected in the order of Kmax, Kavg1, Kavgmin1, 
etc. The Gaussian curvatures are computed as: 

Kavg1 = (Kmax + Kmin)/2;    Kavg2 = (Kavg1 + Kmax)/2;     Kavgmin1 = (Kavg1 + Kmin)/2 

 Kavgmin2 = (Kavgmin1 + Kmin)/2;   Kavgmin3 = (Kavgmin2 + Kmin)/2.  (6)  

 
3.2. Proposed methods 
 
3.2.1. Distribution based on surface area 
 

The proposed method starts with computation of surface area (At) by approximating the 
design surface to consist of  planar triangular facets obtained using the discretized data. The 
total surface area is obtained as: 
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where ∆k,2l is the area of a triangle with vertices at [(k, l), (k+1, l) and (k+1, l+1)], ∆k,2l+1 is the 
area of a triangle with vertices at [(k, l), (k, l+1) and (k+1, l+1)] and (N + 1), (M + 1) are the 
number of points on the discretized surface along the x and y directions respectively. The area 
per sample point is computed as: 
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where, Nu and Nv are the number of sample points along the respective axes. Starting from (xi 
= xmin, yj = ymin), the (xi+1, yj+1) values are selected such that the aspect ratio between the x and 
y axes are maintained and at the same time the surface area between (xi, yj) and (xi+1, yj+1) is 
nearly equal to Ap, with i varying from 1,…,(Nu−1) and j varying from 1,…,(Nv−1). The 
sample points thus obtained are shown in Fig. 4b. 
 
3.2.2. Distribution based on dominant points 
 

The points on a freeform surface with maximum local mean curvature are identified as 
dominant points [13]. The computation of curvatures is outlined in Section 2. Along with 
these points, four points defining the corners of the surface are taken to obtain the initial 
sample set. The initial sample points are used to form regions on the surface in Cartesian 
space. Additional sample points are added one at a time, starting with the largest region in 
terms of surface area. The sample point is taken to be nearly mid-point of the region. After 
adding the point, the region is divided into four sub-regions. The procedure is continued until 
the required sample size is obtained. Fig. 4b shows the sample points in this case. 
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a) b) 

 
 

  Uniform Cartesian spacing                                  Uniform surface area 
Uniform parameter spacing         Dominant points 
Patch size ranking   

Fig. 4. Sample positions on surface (sample size, 36 = 6x6) with 5% margin. a) Existing methods.  
b) Proposed methods. 

 
4. Simulation of manufacturing errors 
 

In general engineering practice, two types of errors such as systematic error and random 
error are encountered. The systematic errors follow a particular, identifiable pattern so that 
they can be accounted for more precisely. The random errors do not have any identifiable 
pattern and hence can be assumed to follow certain probability distribution. Both these types 
of errors are considered here for simulating the manufactured surfaces. 
 

4.1. Systematic errors 
 

Systematic errors consist of different wavelengths. The long wavelength errors come from 
various sources such as errors in machine tool guideways, deflection of workpiece, etc., while 
other wavelength errors are due to vibrations, changing curvatures of surface machined, etc. 
The effect of these errors can be simulated by using appropriate mathematical functions [14]. 

 
4.1.1. Quadratic form error (δδδδq) 
 

The quadratic error, representing the error of form, can be approximated using a second-
order polynomial as given in Eq. (8). 

 
2 2

0 1 2 3 4 5 ,q b b x b y b xy b x b yδ = + + + + +
 (8) 

where, b0, b1, b2, b3, b4, and b5 are the coefficients of the second-order polynomial. In the 
present work, b0 = 4.5(10-3), b1= b2 = −1.7(10-4), b3 = −4.5(10-6) and b4 = b5 = 3.7(10-6) are 
taken to get a maximum value of δq as 0.0105 mm. 
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4.1.2. Sinusoidal form error (δδδδs) 
 

The sinusoidal form error can be approximated using a combination of sinusoidal functions 
as given below: 

 
sin( ) cos( ),s x y x yA w x w y B w x w yδ = + + +

 (9) 

where,  wx is given by 2π/λx and wy is given by 2π/λy; λx and λy are wavelengths of sinusoidal 
components along the x and y direction respectively. The amplitudes of sine and cosine 
components A and B are taken to be 0.005 mm. The wavelengths can be assigned values of 1, 
2 and 3 to simulate different sinusoidal form errors. The maximum value of this error 
component (δs) is 0.010 mm. 
 
4.1.3. Machining form error (δδδδm) 
 

When the cutting tool encounters changing machining conditions as in the case of 
machining of different curvatures in a given surface, form errors are introduced. The 
machining error distribution is computed on the basis of the mean curvature as shown below: 

 ( 0.5),m s sf iδ = −  (10) 

where, fs is the maximum machining error. Index is based on mean curvature of the surface is 
given by is = (H – Hmin)/(Hmax – Hmin). The terms H, Hmin and Hmax are the mean curvature, 
minimum mean curvature and maximum mean curvature of the surface respectively. A value 
of 0.010 mm is chosen for fs so that the maximum value of this error component (δm) is 0.010 
mm. 
 
4.2. Random error (δδδδc) 
 

The random errors in a machining process can be obtained by appropriately conducting a 
machine capability study. This error may be added to systematic errors and the measurement 
can be simulated. During the measurement, noise due to the measuring instrument also gets 
added. The information about relevant range of variation for this random error component can 
be obtained from the CMM manufacturer’s calibration chart.  

The random errors have to be lower than the systematic errors. Since the systematic error 
components used in the present research have been limited to about 0.010 mm, the random 
error has to be less than this value. The present work represents the random errors (δc) due to 
machining and measurement processes by a normal distribution with a mean value of 0.0 mm 
and standard deviation of 0.001 mm, so that the total value of δc is about 0.006 mm. 

 
4.3. Combined manufacturing error 
 

The combined manufacturing error is obtained by superimposing all the error components 
on the design surface. Fig. 5 shows a 3-D plot of combined errors and the maximum linear 
error introduced is 25.29 µm. If S(xi, yj, zi,j) is any sample point on the design surface and its 
coordinates on the manufactured surface are represented by Sm(xi, yj, zi,j’ ), then zi,j’  is given by 
(zi,j+δq+δs+δm+δc). The coordinates Sm(xi, yj, zi,j’ ) have to be used for arriving at probe contact 
during a CMM measurement. 
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5. Computation of probe contact point 
 

In view of the manufacturing errors present on the freeform features, the probes make 
contact with the feature at points different from the sample points chosen [10]. Hence, 
computing the measurement errors based on sample points alone may lead to erroneous 
results. Therefore, the actual point of contact of the probe with the feature needs to be 
established first. 

Lingadurai and Shunmugam extended a general method to computing the envelope of a 
circle rolling over the profile [15] to compute the three dimensional envelope using a toroidal 
element [16]. In this paper, the computation of probe contact for freeform surfaces is done 
using a hemispherical element in place of toroidal element. This approach requires 
discretization of bottom half of the probe (hemispherical shape) to the same discretization 
spacing, namely ∆x and ∆y (Fig. 6) and the ordinate data for the probe (Ek,l) at different 
sections are to be computed. 

The CMM measurement is simulated by positioning the probing system over the freeform 
surface such that the sample point (xi, yj) coincides with the centre of probe (E0,0). The probe 
is then moved steadily downwards until it makes contact with the manufactured surface. For 
computing the probe contact point, the sum of the probe and surface ordinates (Ek,l+z’ i,j) is 
computed within the region of interest. The point at which the maximum value of this sum 
(zmax) occurs gives the probe contact point (xc, yc) with the surface. This procedure is repeated 
for all sample points to get the measurement data {Sc}. 

 

 

 

Fig. 5. 3-D plot of combined error  
(Quadratic error + Sinusoidal (λx=λy=1) error  
+ Machining error + Random). 

Fig. 6. Probe contact point. 
 

 
 

6. Substitute surface and computation of deviations 
 

6.1 Substitute surface 
 

The degrees, knot vectors, number of control points and their weights of the substitute 
surface are taken to be as those of the design surface. Let {Sc} consist of a set of Ns measured 
points and  { ,l lu v }, l=1,…,Ns be the corresponding location parameters in u-v space. The 
objective is to fit a substitute NURBS surface with N=[(n+1)*(m+1)] control points, 
represented as: 



 
G. Rajamohan, et al.: PRACTICAL MEASUREMENT STRATEGIES FOR VERIFICATION OF FREEFORM SURFACES USING… 

 

 

, , , ,
0 0

, , ,
0 0

( ) ( )

( , ) ; , [0,1].
( ) ( )

n m

i p j q i j i j
i j

s n m

i p j q i j
i j

N u N v w P

S u v u v
N u N v w

= =

= =

= ∈
∑∑

∑∑
 (11)

 

A two-step linear approach is reported in the literature for fitting of NURBS surfaces. In 
the first step, the weights are identified and the control points are computed in the second step 
[17]. Since the weights are taken to be 1.0, it reduces to a single-step procedure and the 
algorithmic detail for computing the control points is given in Appendix-A. 
 
6. 2. Computation of deviations 
 

The deviation of a measured point from the substitute surface is computed in the vertical 
(linear) and normal directions as shown in Fig.1. The distance between the measured point 
and corresponding point on the substitute surface along the z-axis gives the linear deviation. 
The shortest distance between the measured point and the substitute surface represents the 
normal deviation.  Let ei represent the deviation and (emax, emin) denote the maximum and 
minimum values of the deviations respectively. The form error is taken to be deviation of the 
measured points from the substitute surface and it is computed as: 

 ∆s=|emax – emin|. (12) 

Depending on the nature of the deviations considered, the form error ∆s may be expressed 
as a linear or normal value. 

The substitute surface established from the measured points may also be positioned 
differently with reference to the design surface. The deviations between the substitute and the 
design surfaces are computed on a point-to-point basis as linear or normal values following 
the procedure outlined above. For quantifying this error, the maximum and minimum 
deviations are represented by pmax and pmin. The form and positional error values are given in 
Table 1 for different measurement strategies. 
 
7. Results and discussion 
 

The NURBS surface taken for the present work is a multi-patch surface with data as given 
in Section 2. The example surface shows substantial variation in its geometry (Fig. 2) and 
different measurement strategies shown in Fig. 3 can be applied conveniently. The surface is 
more suitable for an algorithm involving patch-size ranking as suggested by Obeidat and 
Raman [9]. One can easily visualize the nature of the example surface using contour plots 
given in Fig. 4 and the distribution of sample points. The distribution of sample points based 
on uniform Cartesian and parametric spacing leads to a more ordered scheme which is 
independent of the geometric nature of the surface. The uniform surface area method is giving 
slightly better distribution which depends to some extent on the surface geometry. The 
strategies based on patch size ranking and dominant points show much better distribution of 
sample points with a smaller number of points in flatter regions. 

At the sample positions, data corresponding to CMM measurement is obtained on the 
manufactured surface which represents superimposed systematic and random errors on the 
design surface. The contact points are determined using the procedure outlined in Section 5. 
The probe sizes are assumed to be 0.0 and 1.0 mm in this paper. Using the measured points, 
the substitute surface is established by the procedure given in Appendix A. The linear and 
normal deviations of the measured points from the substitute surface are computed and the 
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form error (emax) is arrived at using Eq. (12). Similarly, the deviations of the substitute surface 
from the design surface are computed to arrive at positional errors, pmax and pmin. The form 
and positional error values obtained for different measurement strategies and sample sizes are 
included in Table 1. 

 
Table 1 Results obtained by different measurement strategies for freeform surfaces (Control points: 5*5) with 

5% margin and discretization interval of ∆x=∆y=100 µm. a) Linear error (µm). b) Normal error (µm). 
a) 

Probe diameter: 0.0 mm 

Errors 
consi-
dered 

Error 
intro-
duced 
(µm) 

Sample 
size 

Existing Methods Proposed Methods 

Uniform Cartesian Uniform Parameter Patch Size Rank 
Uniform Surface 

Area 
Dominant Points 

Form 
Error 

Pos.  
Error 

Form 
Error 

Pos.  
Error 

Form 
Error 

Pos.  
Error 

Form 
Error 

Pos. 
Error 

Form 
Error 

Pos. 
Error 

All Errors 
(λx=λy=1) 19.31 

36 
(6x6) 

5.83 
+8.63 
-12.28 

3.52 
+8.74 
-11.23 

2.51 
+9.45 
-30.81 

6.40 
+8.90 
-11.58 

3.26 
+12.38 
-14.14 

All Errors 
+ Random 25.29 4.80 

+9.18 
-11.01 

4.80 
+9.60 
-12.59 

2.72 
+8.66 
-29.71 

7.67 
+9.68 
-13.55 

3.57 
+11.98 
-17.48 

All Errors 
(λx=λy=1) 19.31 

64 
(8x8) 

6.37 
+8.75 
-11.23 

6.22 
+8.86 
-11.19 

3.57 
+14.76 
-22.41 

6.66 
+8.92 
-10.81 

4.28 
+8.70 
-11.92 

All Errors 
+ Random 25.29 6.45 

+9.22 
-10.81 

7.18 
+10.19 
-11.83 

4.96 
+12.56 
-20.73 

7.72 
+9.65 
-10.98 

5.27 
+10.17 
-11.27 

Probe diameter: 1.0 mm 
All Errors 
(λx=λy=1) 19.31 

36 
(6x6) 

6.03 
+8.44 
-12.00 

3.62 
+7.99 
-11.13 

2.63 
+9.25 
-29.15 

6.52 
+8.88 
-11.63 

3.25 
+12.60 
-14.19 

All Errors 
+ Random 25.29 7.26 

+9.57 
-11.36 

4.65 
+8.81 
-11.94 

4.04 
+11.25 
-35.13 

6.19 
+9.27 
-11.65 

3.45 
+18.70 
-12.45 

All Errors 
(λx=λy=1) 19.31 

64 
(8x8) 

6.34 
+8.57 
-11.08 

6.11 
+8.62 
-10.99 

3.65 
+14.58 
-21.80 

6.72 
+8.92 
-10.83 

4.25 
+8.74 
-11.79 

All Errors 
+ Random 25.29 6.13 

+9.21 
-12.26 

6.94 
+9.10 
-11.95 

4.71 
+13.01 
-36.63 

9.76 
+8.96 
-11.02 

5.72 
+9.73 
-11.31 

 
b) 

Probe diameter: 0.0 mm 

Errors 
consi-
dered 

Error 
intro-
duced 
(µm) 

Sam-
ple 
size 

Existing Methods Proposed Methods 

Uniform Cartesian Uniform Parameter Patch Size Rank 
Uniform Surface 

Area 
Dominant Points 

Form 
Error 

Pos.  
Error 

Form 
Error 

Pos.  
Error 

Form 
Error 

Pos.  
Error 

Form 
Error 

Pos. 
Error 

Form 
Error 

Pos.  
Error 

All Errors 
(λx=λy=1) 18.78 

36 
(6x6) 

5.25 
+8.18 
-12.22 

3.21 
+8.23 
-11.15 

2.44 
+8.99 
-28.94 

5.93 
+8.46 
-11.46 

3.13 
+11.79 
-12.76 

All Errors 
+ Random 24.62 4.31 

+8.73 
-10.75 

4.27 
+9.06 
-12.51 

2.72 
+8.22 
-27.82 

7.12 
+9.19 
-13.43 

3.52 
+11.41 
-15.80 

All Errors 
(λx=λy=1) 18.78 

64 
(8x8) 

5.65 
+8.30 
-11.17 

5.79 
+8.39 
-11.12 

3.47 
+14.07 
-20.53 

6.19 
+8.47 
-10.71 

4.06 
+8.27 
-11.03 

All Errors 
+ Random 24.62 6.03 

+8.77 
-10.76 

6.90 
+9.65 
-11.52 

4.89 
+11.96 
-19.06 

7.15 
+9.16 
-10.85 

5.12 
+9.20 
-11.11 

Probe diameter: 1.0 mm 
All Errors 
(λx=λy=1) 18.78 

36 
(6x6) 

5.41 
+8.02 
-11.92 

3.35 
+7.59 
-11.02 

2.49 
+8.79 
-27.44 

6.05 
+8.43 
-11.51 

3.12 
+12.01 
-12.81 

All Errors 
+ Random 24.62 6.56 

+9.10 
-11.27 

4.57 
+8.37 
-11.82 

3.81 
+10.70 
-32.05 

5.74 
+8.80 
-11.49 

3.31 
+17.84 
-11.17 

All Errors 
(λx=λy=1) 18.78 

64 
(8x8) 

5.62 
+8.14 
-10.99 

5.72 
+8.19 
-10.89 

3.55 
+13.90 
-19.99 

6.26 
+8.47 
-10.72 

4.04 
+8.31 
-11.02 

All Errors 
+ Random 24.62 5.90 

+8.75 
-12.16 

6.80 
+8.69 
-11.23 

4.52 
+12.39 
-33.56 

9.10 
+8.96 
-11.02 

5.44 
+8.85 
-10.66 

 
Table 1a gives form and positional errors based on linear deviation (i.e. along z-axis). With 

all errors, namely systematic and random, combined, the total manufacturing error is 
25.29 µm. With a probe diameter of 0.0 mm and sample size of 36 (6x6), the uniform surface 
area method is able to capture a maximum form error of 7.67 µm when all the errors are 
present. Without random error added, again the uniform surface area method is able to capture 
6.40 µm. In terms of positional error, the uniform surface area method is one among the three 
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methods (uniform Cartesian: 9.18 + 11.01 = 20.19 µm, uniform parametric: 
9.60 + 12.59 = 22.19 µm and uniform surface area: 9.68 + 13.55 = 23.23 µm) yielding lower 
values, when all errors are present. The same is true when only systematic error is present.  
When the sample size is increased to 64 (8x8), Table 1(a) shows that higher form error values 
are captured and the positional errors are reduced.  

With a probe of 1.00 mm diameter and larger sample size of 64 (8x8), the uniform surface 
area method captures the highest form error value of 9.76 µm and lowest positional error of 
19.98 (i.e. 8.96 + 11.02) µm. 

The form and positional error values based on linear deviations are given in Table 1b. It 
may be seen that the total error on the manufactured surface is 24.62 µm considering the 
normal direction, while it is 25.29 µm in the linear direction. The values of form and 
positional errors are also reduced in the normal direction, but the relative performance of the 
measurement strategies remains the same as that seen in the linear direction. 
 
8. Conclusions 
 

This paper deals with practical aspects of verifying freeform surfaces with a CMM. The 
measurement margins and probe size have been considered in the present work. Two 
measurement strategies based on uniform distribution in Cartesian and parametric space yield 
ordered sample points irrespective of the nature of surface geometry. Other three strategies 
viz. patch size ranking, uniform surface area and dominant points based methods consider the 
geometric nature of the surface. The possible manufacturing errors have been added to the 
design surface and data points corresponding to the measurement using a CMM have been 
arrived at for different sampling methods by considering the probe contact. 

Even though the distribution of points with uniform surface area based method is slightly 
better than those using uniform Cartesian and parametric spacing methods, it exhibits superior 
performance in terms of capturing higher form error values with low positional error. 

The present study can be extended to cover freeform surfaces of varying complexities and 
the performance of the different measurement strategies can be further evaluated. 
 
Appendix – A 
 
Construction of Substitute Surface 
 

Taking {Sc} as a set of Ns measured points and {,l lu v }, l=1,…,Ns will be the 

corresponding location parameters in u−v space. To fit a substitute surface, the NURBS 
surface with N=[(n+1)*(m+1)] control points is taken [17] as: 

 

, , , ,
0 0

, , ,
0 0

( ) ( )

( , ) ; , [0,1]
( ) ( )

n m

i p j q i j i j
i j

s n m

i p j q i j
i j

N u N v w P

S u v u v
N u N v w

= =

= =

= ∈
∑∑

∑∑
 (13) 

After rearranging the terms on the left and right hand sides, the above equation (13) can be 
compactly written in matrix form as: 

 ; ; ,BX X Bw BY YBw BZ ZBw= = =  (14) 

 

. 
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where:  

 

0, 1 0, 1 , 1 , 1

0, 0, , ,

( ) ( ) . . . ( ) ( )

. . . . .

. . . . .

. . . . .

( ) ( ) . . . ( ) ( )
s s s s

p q n p m q

p N q N n p N m q N

N u N v N u N v

B

N u N v N u N v

 
 
 
 =
 
 
 
   ; 

 1 1 1... ...
T T

N N NX X X w x w x= =       ;  1 1 1... ...
T T

N N NY Y Y w y w y= =       ; 

 1 1 1... ...
T T

N N NZ Z Z w z w z= =       ;    1 ...
T

Nw w w=    ; 

 1' ... '
sNX Diag x x =   ; 1' ... '

sNY Diag y y =   ; 1' ... '
sNZ Diag z z =   , (15) 

{ xk, yk, zk} are the control points in Cartesian space and {xl
’, yl

’, zl
’} are the measured points. 

The control points can be obtained by estimating the weights matrix w. Taking all the weights 
to be equal to 1, the control points can be obtained by solving (14) in homogenous space. The 
coordinates of the control points in Cartesian space can be computed as: 

 xk=Xk/wk ; yk=Yk/wk ; zk=Zk/wk;      for k=1,..,N. (16) 
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