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Abstract

Freeform surfaces have wider engineering applinati®esigners use B-splines, Non-Uniform Rational B
splines, etc. to represent the freeform surface<CAD, while the manufacturers employ machines
controllers based on approximating functions oringsl Different errors also creep in during machg
operations Therefore the manufactured freeform surfaces havée verified for conformance to des
specification. Different points on the surface prebed using a coordinate measuring machine anstiguk
geometry of surface established from the measuogtgpis compared with the design surface. The saug
points are distributed according to different sigis. In the present work, two new strategiessifiduting the
points on the basis of uniform surface area andirlmmh points are proposed, coresithg the geometrical natt
of the surfaces. Metrological aspects such as proh&act and margins to be provided along the didee als
been included. The results are discussed in tefrdewation between measured points and subssiutiace &
well as between design and substitute surfacescamgpared with those obtained with the methods tedar
the literature.

Keywords: freeform surface, coordinate measuringhime, machining errors, probe size, sampling egias,
substitute geometry
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|. Introduction

Freeform features find wider applications in thesdand moulds, patterns and models,
plastic products,etc. used in many fields ranging from automotive andosgace to
biomedical, entertainment and geographical datzgsging [1]. Designers use B-splines,
Non-Uniform rational B-splines,etc in creating freeform surfaces for engineering
applications and often specify profile toleranc&$anufacturers employ machines with
controllers based on approximating functions oringsl Also during the machining
operations, errors are introduced due to tool defle, workpiece deflection, guideway
errors, spindle runout, machine vibrati@t¢ Therefore, the manufactured freeform surfaces
are verified using contact and non-contact methdde coordinate measuring machines
(CMMs) using contact probes measure a large nurobatiscrete sample points. These
measured points are used to create the substidatmeagry for the feature being measured.
The substitute geometry is compared with the degigent (CAD model) to determine
conformance. It is intuitive that the measuremeartdueacy increases with increased sample
size, however the sample size is often limited &gt @nd time constraints. Thus, for a given
sample size, the sampling strategy used is expedotedketermine the locations of these
measurement points such that the surface may betietfly characterized.

Verification of freeform features is a challengtagk. The common measurement strategy,
especially in the inspection planning softwaretpiglistribute the sample points in a uniform
pattern [2]. Though the method is very simple, @yroften result in inadequate sampling
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when there are sharp changes in curvatures andessaily more sampling at relatively flat
regions, both of which are undesirable in the measant process. A number of research
efforts to overcome this problem have been repomethe literature. Cho and Kim [3]
proposed a sampling method using the surface mearatare. Their method divides the
surface into sub-regions and ranks them accordintpeir mean curvature. A factor called
region selection ratio, ranging between 0 and Lsed in such a way that sample points are
spread over the surface for larger region selectitio and accumulated at the regions of high
curvature for smaller region selection ratio. Pagtlgl [4] proposed three sampling methods,
viz. uniform distribution, curvature dependent dlimition and hybrid distribution. The
uniform distribution places sample points in theddhe of the surface grid. The curvature
dependent distribution uses the normal curvatudepdaces more sample points at regions of
high normal curvature. The hybrid method distrisutike sample points in a user-specified
proportion between the uniform and curvature depehdistribution methods.

Edgeworth and Wilhelm [5] proposed an iterative metbased on the surface normal data
in which an interpolating curve between sample tsoon an initially sampled surface is
developed and areas requiring further samples dmntified for a complete measurement.
ElKott, et al. [6, 7] proposed four sampling algorithms basedsorface feature. The equi-
parametric sampling method distributes the sampboigts equally along the knot vectors.
The patch-size-based sampling method divides thiaciinto patches at the knot vectors.
The share of points along tleandv parametric directions is proportional to the sife¢he
patch. The patch mean Gaussian curvature methéd tha surface patches on the basis of
their mean Gaussian curvature and the share oflegmonts will be larger for patch with
higher ranking. The fourth method combines patelk sind mean Gaussian curvature-based
methods with user specified weights.

Ainsworth, et al. [8] proposed three sampling criteria, namely ardhlength criterion
specifying the maximum chordal deviation betweem lthe connecting any two points and
the surface; a minimum sample density criterioncp@g the maximum allowed distance
between any two neighboring points on the surfaoet a parameterization based sampling
criterion taking the number of samples per knotispsa specified by the user. Obeidat and
Raman [9] proposed three heuristic algorithms &ngling of freeform surface patches using
maximum Gaussian curvature, mean Gaussian curgatum@ the point with average of the
mean Gaussian curvature and minimum Gaussian cwevas critical points. The first
algorithm starts with three sample locations inhepatch corresponding to the critical points
and places additional sample points in low densatiches. In the second algorithm, the initial
sample points are placed according to the firsbritlym and the remaining points are added
according to a particular patch size. The thirdoatgm first allocates sample points using
patch mean Gaussian curvature ratio, additionapkapoints are added according to patch
size ratio.

It is seen that different strategies have beenrtegan the literature for verification of
freeform features using a CMM. Given the numbesafple points, the sampling strategy
has to distribute these points over the surfaceuch a way that the feature is effectively
characterized. At the sample positions, the measeme is carried out and the measured
points are used to construct the substitute gegmatrsurface The linear and normal
deviations of the measured point from substitutéase are shown in Fig. 1. It is observed
from the literature that the effect of probe siretloe sampling results is not considered, while
this is very important as the probe may not makaamd with the work surface at the same
point as that of the sampling point chosen. Nexidrtant observation is that these strategies
lack metrological sense, which emphasizes thatstiveple points cannot be located at the
edges as the edge measurement is unreliable. @sess can cause potential changes in the
results obtained during verification. The abovaiégsshave already been considered by the
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authors for freeform profiles [10] and are beingeexled here to freeform surfaces. Two new
surface geometry based sampling strategies havedreposed in the present work. The first
strategy is based on the surface area and the destrategy is based on the concept of
dominant points. Three existing sampling strategigmmely the uniform distribution in
Cartesian space and parametric space and distribuiased on patch-size are also
implemented. The results obtained using all thaserhethods are reported and discussed. It
is seen that uniform surface area based methodrpefwell in capturing higher form error
values with low positional errors.

2. CAD model of freeform surface

The freeform features used in this study use ther-Doiform Rational B-Splines
(NURBS) representation [11]. The NURBS is used ha® it is the de facto industrial
standard for computer aided design (CAD) due tali#ity to accurately represent various
shapes, including the primitives such as the sgheardinders, etc. to even very complex
freeform features. The CAD model of freeform suefas referred to as design freeform
surface or simply design surface in the presenkwor

The design surface used in this work i€%acontinuous, Non-uniform Rational B-Spline
(NURBS) surface. The NURBS surface is defined ugmdl)*(m+1) control points, denoted
asP;j. The NURBS surface with degregs @), defined in parametric spaae (), is given as:

.“ Zm:Ni,p(”) Na(Ww; R
Sy y =20 © Y \d[o,1].

n m

ZZNi,p(”) N o () W

i=0 j=

o

1)

The {P;;} are the control points forming a bidirectionalntw! net, the {;} are the
weights and R ,(u)} and {N;4(v)} are the non-rational B-spline basis function§irked in the
knot vectordJ andV respectively. The value ®f , (u) can be estimated using the following
recursive relations, choosing 0/0 = 0, if the demators in the equation become zero.

N, ,(u) = uu __LL N,-.(U + Ypn 7Y Nysg o1 (U5 )

1+p ui+p+1_ +1

where,N; o (u) = 1; Ui S U< U4
0; otherwise

The above equation can be used to commjte (v) by appropriately replacing the
variables.

The data used for designing the example surfageén below.
Surface degreep,(q): 3, 3 Number of control pointsn€1) * (m+1)) :5*5
Control points (mm):
Poo(0, 0,20)  R4(0,12.5,30) A0, 25,33) B0, 37.5, 20) P40, 50, 25)
P1o(12.5, 0, 23) P4(12.5, 12.5, 27) P(12.5, 25, 30) Py12.5, 37.5, 17) £4(12.5, 50, 23)
P,o(25, 0, 25) R4(25, 12.5,25) PA25, 25,27) P25, 37.5,22) P25, 50, 25)
P;«(37.5, 0, 20) P4(37.5, 12.5, 27) £(37.5, 25, 20) Py37.5, 37.5, 20) £437.5, 50, 14)
P.o(50, 0, 27) R1(50, 12.5, 23) PA50, 25, 25) R«50, 37.5,27) P«A50, 50, 22)
Knot vectors:U = {0.0, 0.0, 0.0, 0.0, 0.3600, 1.0, 1.0, 1.0, 1.0}

v ={0.0, 0.0, 0.0, 0.0, 0.3717, 1.0, 1.0, 1.0, 1.0}
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Fig. 2 shows the design freeform surface. The desigface is discretized in Cartesian
space with suitablax and Ay spacing along th& andy axes. The correspondingandv
parameter values at each point on Cartesian spac®mputed. The mean curvatur énd
Gaussian curvaturKj are also computed [12] using the following equradi

_EN-2FM+GL. , _ LN- M
2EG-F) ' (EG-F) ®)
- - - - - - - - & - o - quﬂt
E=S,S; F=58,:8; G=5,8; L=risS,; M=nS,i N=nedoim=rs

where,S, is the first derivative along; S, is the first derivative along; S, is the second
derivative alongy; S,y is the derivative of, alongv andS,, is the second derivative alorg
The symbols x anelindicate the cross and dot products respectively.

Normal deviation

Substitute surfac; Measured point

Linear deviation

Points on substitute
surface )
> 00

X

Fig. 1. Freeform surface showing the measured Fig. 2. 3-D plot of the design surface.
point and deviations.

Design surface

3. Measurement strategies

In the present work, performance of all the remgbrédgorithms is analyzed with 5%
margins from all boundaries/edges. The start amdpaints are set at 5% of the feature size
along that direction in Cartesian space. For thésgin, the lower and upper bounds of the
surface along thex-axis, denoted asmin and Xmax respectively, are computed. The
corresponding parameter values axg andumax respectively. Similarly, the lower and upper
bounds of the surface along thexis, denoted agnin andymax respectively, are computed.
The corresponding parameters valuesvareandvmax respectively. The general flowchart for
all measurement strategies is shown in Fig. 3.

3.1. Existing methods
3.1.1. Uniform distribution in Cartesian space

The sample points are distributed with nearly epalcing along th& andy axes. The
spacing between sample points along each axis depanthe feature size and the number of

sampling points along that axis. Then, the positien, y*j) of all the sampling points can be
obtained from the equation given below.
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* : }:max_xmin - - ymax_ ymin -
C = X, F(I-D)/2—i=1, LN, andy, =yt (- TR j= 1N,
X = X +(i-1) (N.—1) o andy; =y, + N1 | 4)

whereN, andN, are the sample sizes along ihandy axes respectively. Using the computed
(xi, y;) values, the nearest poing,(y) on the discretized surface is obtained. The $amp
points thus obtained are shown in Fig. 4a.

Specify design surface:
Degree §, @), control pointsPi,j(n*m) and knot vectordJ, V)

v

Discretize design surface in Cartesian space withdpacindAx, Ay)
and compute the correspondimgandv-parameters

v
| Specify sample size: Number of poirNs (=N *N,) |

_____________________________ S —

1+ Distribute sampling points according to meastent strategy select i
v

| Simulate manufactured surface with spacifug Q\y) |
v
Select CMM probe size and measure at sample points
v
Construct substitute surface based on CMM ddta

v

Compute deviation: measured points and subsstutace;
substitute surface and design sur

Enc

Fig. 3. General flowchart for the present work.
3.1.2. Uniform distribution in parametric space

The sample points are distributed with nearly ecpalcing along the andv parametric
directions. The spacing between sample points akawp parametric direction depends on
the range of the parameter *and the number of sagqploints along that direction. The
positions of sample pointsi{, v;) are given by the following equation:

. o U U . Voax = Viin 5 _
U o=u,, +(I—1)w,l =1,..N, andv, = v, + (- Bﬁ = L.N, (5
wbergNu andNy are the sample sizes along thandv directions respectively. The computed
(ui, vj) values are used to select the nearest paintg)(from the discretized design surface.
The sample points obtained by this method are shiowig. 4a.
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3.1.3. Distribution based on patch size

The patch size ranking strategy proposed by ObaitdiRaman [9] is suitably modified to
work for a given sample size. The knot vectdds ) are used to divide the given design
surface into patches and the patch sizes are cenhplfita patch hag bounds as; andu, and
v bounds as; andv,, the patch size is computed as< w) * (V2 — w). The given sample size
Ns is shared among the patches based on their Jikesselection of sample points is based
on mean Gaussian curvatur&9.(The points are selected in the ordeKgfy Kavgs Kavgmina
etc The Gaussian curvatures are computed as:

Kavgt = (Kmaxt Kmin)/2;  Kavg = (Kavgt + Kma/2;  Kavgmini= (Kavgt + Kmin)/2
Kavgmire = (Kavgmin. + Kmin)/2;  Kavgmirz = (Kavgmire + Kmin)/2. (6)

3.2. Proposed methods
3.2.1. Distribution based on surface area

The proposed method starts with computation ofeserfarea (A by approximating the
design surface to consist of planar triangulaetsobtained using the discretized data. The
total surface area is obtained as:

N-1M-1

A= Z By o + Dy 210)s
k=0 1= (7a)

wherely , is the area of a triangle with vertices & [f, (k+1,1) and k+1, 1+1)], Ak 241 is the
area of a triangle with vertices ak|[(), (k, I+1) and k+1,[+1)] and N + 1), (M + 1) are the
number of points on the discretized surface albegktand y directions respectively. The area
per sample point is computed as:

A

% (N, ~1)(N, -’ (7h)
where,N, andN, are the number of sample points along the respeaties. Starting from(
= Xmin: ¥ = Ymin), the &+1, yj+1) values are selected such that the aspect raiigeba thex and
y axes are maintained and at the same time thecsusf@a betweernx;(y;) and -1, Yj+1) IS
nearly equal toA, with i varying from 1,...N,~1) andj varying from 1,...K,~1). The
sample points thus obtained are shown in Fig. 4b.

3.2.2. Distribution based on dominant points

The points on a freeform surface with maximum locedan curvature are identified as
dominant points [13]. The computation of curvatui®outlined in Section 2. Along with
these points, four points defining the cornerstaf surface are taken to obtain the initial
sample set. The initial sample points are usedtm fregions on the surface in Cartesian
space. Additional sample points are added oneteey starting with the largest region in
terms of surface area. The sample point is takdvetaearly mid-point of the region. After
adding the point, the region is divided into foubgegions. The procedure is continued until
the required sample size is obtained. Fig. 4b shbevsample points in this case.
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a) b)

y, mm
y, mm

O‘ 10 15 20 25 30 35 40 45 50

X, mm

X, mm
® Uniform Cartesian spacing x  Uniform surface area
+ Uniform parameter spacing + Dominant points

x Patch size ranking

Fig. 4. Sample positions on surface (sample si&e; 8x6) with 5% margin. a) Existing methods.
b) Proposed methods.

4. Simulation of manufacturing errors

In general engineering practice, two types of arsarch as systematic error and random
error are encountered. The systematic errors foloparticular, identifiable pattern so that
they can be accounted for more precisely. The nandoors do not have any identifiable
pattern and hence can be assumed to follow cqptaimability distribution. Both these types
of errors are considered here for simulating thaufectured surfaces.

4.1, Systematic errors

Systematic errors consist of different wavelengfite long wavelength errors come from
various sources such as errors in machine tookegeagls, deflection of workpieceic, while
other wavelength errors are due to vibrations, gmancurvatures of surface machineds.
The effect of these errors can be simulated byguappropriate mathematical functions [14].

4.1.1. Quadratic form error (d)

The quadratic error, representing the error of foran be approximated using a second-
order polynomial as given in Eq. (8).

5=, +0xr b yr ke pir b ©

where, by, by, by, bz, bs, andbs are the coefficients of the second-order polyndnirathe
present workpo = 4.5(10%), by= b, = -1.7(10%, bs = -4.5(10°%) andb, = bs = 3.7(10° are
taken to get a maximum value &fas 0.0105 mm.
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4.1.2. Sinusoidal form error (&)

The sinusoidal form error can be approximated uaiesgmbination of sinusoidal functions
as given below:

o, = Asin(w, x+ w, y)+ Bcos(w % w ) ©)
where,wy is given by2774, andwy is given by27#4y; A, andA, are wavelengths of sinusoidal
components along the and y direction respectively. The amplitudes afesand cosine
components A and B are taken to be 0.005 mm. Thelagths can be assigned values of 1,
2 and 3 to simulate different sinusoidal form esrofhe maximum value of this error
componentd) is 0.010 mm.

4.1.3. Machining form error ()

When the cutting tool encounters changing machintogditions as in the case of
machining of different curvatures in a given suegfadorm errors are introduced. The
machining error distribution is computed on thei®a$ the mean curvature as shown below:

o, =f(,-0.5), (10)
where,fs is the maximum machining error. IndeXased on mean curvature of the surface is
given byis = (H — Hmin)/(Hmax — Hmin)- The termdH, Hyin and Hnax are the mean curvature,
minimum mean curvature and maximum mean curvatfiteeosurface respectively. A value
of 0.010 mm is chosen fdy so that the maximum value of this error comporéglis 0.010
mm.

4.2. Random error (&)

The random errors in a machining process can beingut by appropriately conducting a
machine capability study. This error may be addeslystematic errors and the measurement
can be simulated. During the measurement, noisealtlee measuring instrument also gets
added. The information about relevant range ofatim for this random error component can
be obtained from the CMM manufacturer’s calibratobyart.

The random errors have to be lower than the systemaors. Since the systematic error
components used in the present research have imeiggdIto about 0.010 mm, the random
error has to be less than this value. The preserk represents the random errodg) fue to
machining and measurement processes by a norntdlbdi®n with a mean value of 0.0 mm
and standard deviation of 0.001 mm, so that the t@lue ofod. is about 0.006 mm.

4.3. Combined manufacturing error

The combined manufacturing error is obtained byesugposing all the error components
on the design surface. Fig. 5 shows a 3-D plotoohltined errors and the maximum linear
error introduced is 25.2@m. If S(%, ¥, z,) is any sample point on the design surface and its
coordinates on the manufactured surface are regeesbySnw(X;, ¥, z;’), thenz;’ is given by
(z,j+ &+ &t Ot &). The coordinateSy(x;, i, z;') have to be used for arriving at probe contact
during a CMM measurement.
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5. Computation of probe contact point

In view of the manufacturing errors present on fileeform features, the probes make
contact with the feature at points different frohe tsample points chosen [10]. Hence,
computing the measurement errors based on samjmés pglone may lead to erroneous
results. Therefore, the actual point of contacttted probe with the feature needs to be
established first.

Lingadurai and Shunmugam extended a general méthodmputing the envelope of a
circle rolling over the profile [15] to compute tkimee dimensional envelope using a toroidal
element [16]. In this paper, the computation ofpgr@ontact for freeform surfaces is done
using a hemispherical element in place of toroig&@ment. This approach requires
discretization of bottom half of the probe (hemisptal shape) to the same discretization
spacing, namelyAx and Ay (Fig. 6) and the ordinate data for the prdBe) at different
sections are to be computed.

The CMM measurement is simulated by positioningptabing system over the freeform
surface such that the sample poiqt ¥) coincides with the centre of probigy(). The probe
is then moved steadily downwards until it makestacnwith the manufactured surface. For
computing the probe contact point, the sum of treb@ and surface ordinatéS, +z'ij) is
computed within the region of interest. The poihtvich the maximum value of this sum
(zmaxy Occurs gives the probe contact poiat {) with the surface. This procedure is repeated
for all sample points to get the measurement dafa {

Eoo

E, \ / Bottom half of probe

Fig. 5. 3-D plot of combined error Fig. 6. Probe contact point.
(Quadratic error + Sinusoidal,& A,=1) error
+ Machining error + Random).

6. Substitute surface and computation of deviations
6.1 Substitute surface

The degrees, knot vectors, number of control poamig their weights of the substitute
surface are taken to be as those of the desigacgurtet &} consist of a set oNs measured

points and {,,Y}, 1=1,...Ns be the corresponding location parameters in uacspThe

objective is to fit a substitute NURBS surface with=[(n+1)*(m+1)] control points,
represented as:
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n

ZiNi,p(U) Na(Ww; R
S(BV)=—"= ; uWvap,].

n m

2O NN (W) w,
i=0 j=0 (11)

A two-step linear approach is reported in the ditere for fitting of NURBS surfaces. In
the first step, the weights are identified andadbetrol points are computed in the second step
[17]. Since the weights are taken to be 1.0, ituced to a single-step procedure and the
algorithmic detail for computing the control poigsgiven in Appendix-A.

6. 2. Computation of deviations

The deviation of a measured point from the sulistitwrface is computed in the vertical
(linear) and normal directions as shown in Fig.he Histance between the measured point
and corresponding point on the substitute surfémegathez-axis gives the linear deviation.
The shortest distance between the measured painth@nsubstitute surface represents the
normal deviation. Leg represent the deviation andn{, enin) denote the maximum and
minimum values of the deviations respectively. Tdrven error is taken to be deviation of the
measured points from the substitute surface aisccimputed as:

As=|@nax— 6ninl- (12)

Depending on the nature of the deviations consijeére form erro\s may be expressed
as a linear or normal value.

The substitute surface established from the medspmnts may also be positioned
differently with reference to the design surfachke Teviations between the substitute and the
design surfaces are computed on a point-to-poisiskas linear or normal values following
the procedure outlined above. For quantifying thisor, the maximum and minimum
deviations are represented fy.x andpmin. The form and positional error values are given in
Table 1 for different measurement strategies.

7. Results and discussion

The NURBS surface taken for the present work isultitpatch surface with data as given
in Section 2. The example surface shows substavdigtion in its geometry (Fig. 2) and
different measurement strategies shown in Fig.rBb@aapplied conveniently. The surface is
more suitable for an algorithm involving patch-sianking as suggested by Obeidat and
Raman [9]. One can easily visualize the naturehefd@xample surface using contour plots
given in Fig. 4 and the distribution of sample pgeirThe distribution of sample points based
on uniform Cartesian and parametric spacing leads. tmore ordered scheme which is
independent of the geometric nature of the surféle.uniform surface area method is giving
slightly better distribution which depends to somdent on the surface geometry. The
strategies based on patch size ranking and dompwnts show much better distribution of
sample points with a smaller number of points attélr regions.

At the sample positions, data corresponding to Chilglasurement is obtained on the
manufactured surface which represents superimpsgsg@matic and random errors on the
design surface. The contact points are determiséduhe procedure outlined in Section 5.
The probe sizes are assumed to be 0.0 and 1.0 ntimsipaper. Using the measured points,
the substitute surface is established by the prgeediven in Appendix A. The linear and
normal deviations of the measured points from thigsstute surface are computed and the
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form error €may is arrived at using Eq. (12). Similarly, the d&ions of the substitute surface
from the design surface are computed to arriveoattipnal errorspmax and pmin. The form

and positional error values obtained for differer@asurement strategies and sample sizes are
included in Table 1.

Table 1 Results obtained by different measurentestegjies for freeform surfaces (Control pointssBivith
5% margin and discretization interval&st=Ay=100um. a) Linear errori(m). b) Normal errori{m).
a)

Probe diameter: 0.0 mm
Error Existing Method i Proposed Methot
E;:?Srls intro- Sample Uniform Cartesian Uniform Parametefr Patch Size Rank] Unlfo;?eiurface Dominant Points
dered (zucme;d size Form Pos. Form Pos. Form Pos. Form Pos. Form Pos.
H Error Error Error Error Error Error Error Error Error Error
RE 19| g [505] 5% o5 b | 2o | 9% | ow | %] sao| 22
+ + + + +
ALENOrS | 5509 | (OX6) | 4 g _ﬁ'_%ﬁ 4.80 _1%%% 2.72 _2%_6;61 7.67 _1%_65% 3.57 _1171_'288
RS (1991 o0 [007] 50 [ore] 535 | 95 | in | wee | %[ am0| B0
All Errors (8x8) +9.22 +10.19 +12.56 +9.65 +10.17
+ Random 25.29 6.45 1081 7.18 11.83 4.96 2073 7.72 10.98 5.27 11.27
Probe diameter: 1.0 mm
D | 1931 g5 | 603] J50 | 362] 15| 268 | Gods | 652 | Jiga| 325 | gk
ALENOS | 5509 | (6X6) | 7 26 "1%532 4.65 _;81'%%1 4.04 +§5112§ 6.19 Jﬁ%; 3.45 +11281é)
RS (1991 o0 [o0t] op |ont| 5% | 9 | Ban| 7 | k[ aas| 578
All Errors (8x8) +9.21 +9.10 +13.01 +8.96 +9.73
+ Random 25.29 6.13 12.26 6.94 11.95 4.71 36.63 9.76 11.02 5.72 1131
b)
Probe diameter: 0.0 mm
Error Existing Methods _ Proposed Methods
E(;rr?sri intro- S;;n- Uniform Cartesian Uniform Parameter Patch Size Ran Unlfotgljeiurface Dominant Points
dered (:u;e)d size Form Pos. Form Pos. Form Pos. Form Pos. Form Pos.
H Error Error Error Error Error Error Error Error Error Error
REp 1070 o 525 58 | sar | 223 [2ee| 5% o] 308 ans| HE
ALEnors | op62| G| 431 1%77% 4.27 _1?2'_%61 2.72 "2872822 7.12 _"1%';% 352 +1151§g
5y (1070 o, |sos| 13 |50 | 239 [swr| & [or0] 34 ave| 221
All Errors (8x8) +8.77 +9.65 +11.96 +9.16 +9.20
+ Random 24.62 6.03 -10.76 6.90 1152 4.89 -19.06 7.15 -10.85 5.12 1111
Probe diameter: 1.0 mm
AIIFrrfrs 18.78 541 +8.02 335 +7.59 249 +8.79 6.05 +8.43 312 +12.01
A=Ay=1) 36 -11.92 -11.02 -27.44 -11.51 -12.81
ALEnors | 5q62 | 6%) | 656 1212()7 457 1*31%72 3.81 +§§gg 5.74 _"1*31'_2% 3.31 +1117 'f;‘
AII_Errfrs 18.78 5.62 +8.14 5.72 +8.19 355 +13.90 6.26 +8.47 4.04 +8.31
(A=A=1) 64 -10.99 -10.89 -19.99 -10.72 -11.02
All Errors (8x8) +8.75 +8.69 +12.39 +8.96 +8.85
+ Random 24.62 5.90 1216 6.80 11.23 4.52 3356 9.10 11.02 5.44 10.66

Table 1a gives form and positional errors baselinear deviationi(e. alongz-axis). With
all errors, namely systematic and random, combirthd, total manufacturing error is
25.29um. With a probe diameter of 0.0 mm and sample GiZZ6 (6x6), the uniform surface
area method is able to capture a maximum form exfof.67 um when all the errors are
present. Without random error added, again theoumisurface area method is able to capture
6.40pum. In terms of positional error, the uniform sudarea method is one among the three
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methods (uniform Cartesian: 9.18 + 11.01 = 20.18n, uniform parametric:
9.60 + 12.59 = 22.18m and uniform surface area: 9.68 + 13.55 = 223 yielding lower
values, when all errors are present. The sameaigswhen only systematic error is present.
When the sample size is increased to 64 (8x8),eTafa) shows that higher form error values
are captured and the positional errors are reduced.

With a probe of 1.00 mm diameter and larger sarsjzie of 64 (8x8), the uniform surface
area method captures the highest form error vali87® um and lowest positional error of
19.98 (.e. 8.96 + 11.02um.

The form and positional error values based on fimewiations are given in Table 1b. It
may be seen that the total error on the manufattaweface is 24.6m considering the
normal direction, while it is 25.29um in the linear direction. The values of form and
positional errors are also reduced in the norma&ction, but the relative performance of the
measurement strategies remains the same as thahgée linear direction.

8. Conclusions

This paper deals with practical aspects of verdyireeform surfaces with a CMM. The
measurement margins and probe size have been eogwidn the present work. Two
measurement strategies based on uniform distributicCartesian and parametric space yield
ordered sample points irrespective of the natursuoface geometry. Other three strategies
viz. patch size ranking, uniform surface area amohidant points based methods consider the
geometric nature of the surface. The possible nztuifing errors have been added to the
design surface and data points corresponding toré@surement using a CMM have been
arrived at for different sampling methods by coesiay the probe contact.

Even though the distribution of points with unifoguarface area based method is slightly
better than those using uniform Cartesian and petr&arspacing methods, it exhibits superior
performance in terms of capturing higher form ewaues with low positional error.

The present study can be extended to cover freedarfaces of varying complexities and
the performance of the different measurement gfiegecan be further evaluated.

Appendix — A
Construction of Substitute Surface

Taking {S} as a set ofNs measured points andU{, Y}, 1=1,...Ns will be the

corresponding location parameters unv space. To fit a substitute surface, the NURBS
surface with N=[(+1)*(m+1)] control points is taken [17] as:

. ZNi,p(U) N o (V) w; B
S(4V) == ; uwwvapog -
22N @N, (M w,
i=0 j=0 (13)
After rearranging the terms on the left and rigntidh sides, the above equation (13) can be
compactly written in matrix form as:

BX=XBw BY= YBw BZ ZB (14)
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where:

[ NO,p(Ul) NO,q(T/]) " " " Nn,p(_ul) N‘n,q(_\o ]

_No,p(UNS)NO,q(T/NS) Co Nn,p(_uM)qu(_Vu)_-

X=[X .. XN]T =[wx .. V}(I)&]T; Y=[Y .. \(,]T =[wy .. WM]T;
z=[z, .. z,] =[wz .. VM@]T; w=w ... m]T;

Y:Diag[x‘l x'NS]\_(:Diag[y1 y‘NS]Z:Diag[z‘l z'NS} (15)

{X W Z} are the control points in Cartesian space and ¥, 7} are the measured points.
The control points can be obtained by estimatimgvikights matrixv. Taking all the weights
to be equal to 1, the control points can be obthlmesolving (14) in homogenous space. The
coordinates of the control points in Cartesian spamn be computed as:

X=X kWy ; V=Y Wy s Ze=Zidwi; fork=1,..N. (16)
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